Co^{II} and Ni^{II} Benzeneseleninato Complexes

heptaamylose) back to the active isomer of $Co(NH₃)₄ATP$. By treatment with HI04, followed by aniline at pH 5, Co- By treatment with FIIO₄, followed by annihie at pF1 5, Co-
(NH₃)₄ATP isomers are degraded to Co(NH₃)₄H₂P₃O₁₀ = adenosine monophosphate. ADP = adenosine diphosphate, AMP without loss of chirality. The CD of each enantiomer at 550 nm is the same in sign as that of the parent nucleotide, and x-ray analysis of a crystal of $Co(N\hat{H}_{3})_{4}H_{2}P_{3}O_{10}$ from the inactive isomer of $Co(NH₃)₄ATP$ (negative CD) shows that it corresponds to attachment of AMP in position b of the first diagram given above.³² The active isomer (positive CD) corresponds to attachment of AMP in position a. The ³¹P NMR spectra are in excellent agreement with the simulated ones in Figure 3, with (c) being the active and (d) the inactive isomer.

The diastereomers of $Co(NH_3)_4ADP$ separate cleanly on the cycloheptaamylose column, with the one whose α -phosphate is farthest downfield in Figure **2** coming off first and having a negative CD band at 540 nm. The second isomer (positive CD) probably corresponds in structure to attachment of adenosine in position a of the diagram. This work will be reported in detail at a later date.

Acknowledgment. This work was supported in part by grants to W.W.C. from the National Science Foundation (BMS-16134) and the National Institutes of Health (GM-18938).

Registry No. Co(NH₃)₄HATP, 63915-26-4; Co(NH₃)₄ADP, 63915-25-3; $Co(NH_3)_4HP_2O_7$, 63915-24-2; $Co(en)_2HP_2O_7$, 63915-34-4; $[Co(en)_2P_2O_7]$, 63915-33-3; $[Co(NH_3)_4P_3O_{10}]^{2\tau}$, (24) 63937-09-7; Co(NH₃)₅ADP, 63937-08-6; Co(NH₃)₅HP₂O₇, 63915-23-1; $Co(NH_3)_4H_2P_3O_{10}$, 63915-22-0; $Co(NH_3)_3H_2P_3O_{10}$, 63915-20-8; $[Co(NH_3)_5P_2O_7]$, 63915-21-9; $[Co(NH_3)_4P_2O_7]$, 63915-32-2; $[Co(NH_3)_3P_3O_{10}]^2$, 63937-07-5; $[Co(NH_3)_5H_2PO_4]^{2+}$, 19169-72-3; $[Co(NH_3)_5H_3P_2O_7]^2$ ⁺, 63915-31-1; $[Co(NH_3)_4H_2P_2O_7]^+$, 63915-30-0; $[Co(NH_3)_4H_3P_3O_{10}]^+$, 63915-29-7; $[(NH_3)_4Co-\mu (NH_2, PO_4)$ -Co $(NH_3)_4]$ ²⁺, 34420-25-2; [Co $(NH_3)_4HPO_4]$ ⁺, $64023-30-9$; $[Co(NH_3)_4ATP]$, 63915-28-6; $[Co(NH_3)_2(H_2O)_2Cl_2]Cl$ 15244-74-3; $[\text{Co(NH₃)₄CO₃]_{NO₃}$, 15040-52-5; trans- $[\text{Co(en)}₂Cl₂]_{CI}$, 53861-32-8; K[Co(NH₃)₂(NO₂)₄], 14285-97-3; [Co(NH₃)₃CO₃]NO₃, 14040-33-6; $[Co(NH₃)₃(H₂O)Cl₂]Cl$, 13820-77-4; H₄ATP, 3714-60-1; CO, 7440-48-4.

References and Notes

(a) Presented in part at the 172nd National Meeting of the American Chemical Society, San Francisco, Calif., 1976; see Abstracts, No. BIOL 121 and INOR 150. (b) To whom correspondence should be addressed at the Department of Chemistry, Wichita State University, Wichita, Kans. 67208.

- ATP = adenosine triphosphate, ADP = adenosine diphosphate, AMP
= adenosine monophosphate.
M. L. DePamphilis and W. W. Cleland, *Biochemistry*, **12**, 3714 (1973).
K. D. Danenberg and W. W. Cleland, *Biochemistry*, **14**, 28
-
-
- D. **A.** Armbruster and F. B. Rudolph, *ibid.,* 251,320 (1976); J. Bar-Tana and W. W. Cleland, *ibid.,* 249, 1271 (1974). D. 0. Brummond and W. W. Cleland, *Fed. Proc., Fed. Am.* Soc. *Exp.*
- *Biol.,* 33, 1565 (1974), Abstract 1929. R. Duval, *Ann. Chim. (Paris),* [IO] 18, 241 (1932).
-
- W. Schmidt and H. Taube, *Inorg. Chem.,* 2, 698 (1963). (8)
- H. Siebert, Z. *Anorg. Allg. Chem.,* 296, 286 (1958). (10) S. F. Lincoln and D. R. Stranks, *Aust. J. Chem.*, **21**, 37 (1968). (b) Since the completion of this work, the crystal structure of $Co(en)_2PO_4$. has been reported by B. Anderson, R. M. Milburn, J. M. Harrowfield, G. B. Robertson, and A. M. Sargeson, *J. Am. Chem. Soc.,* 99,2652 (1977). These authors also cite a private communication dealing with *Co-* $(en)_2HP_2O_7.$
- J. D. Edwards, **S.** Foong, and **A.** G. Sykes, *J. Chem. Soc., Dalton Trans.,* 829 (1973).
- C. Stanisav and R. Vatulescu, *Stud. Univ. Babes-Bolyai, Ser. Chem., 20,* 11 (1975).
- (13) D. G. Gorenstein, *J. Am. Chem. SOC.,* 97, 898 (1975).
- E. Baskerville, *Anal. Chem.,* 21, 1089 (1949). J. C. Bailar, *Inorg. Synth., 2,* 222 (1946).
-
- G. Schlessinger, *Inorg. Synth.,* 9, 170 (1967).
- G. Schlessinger, *Inorg. Synth.*, 6, 180 (1960).
F. Basolo and K. Murmann, *Inorg. Synth.*, 4, 171 (1953).
-
- G. Schlessinger, *Inorg. Synth.,* 6, 173 (1960). W. Stanley, S. Lum, and C. **S.** Garner, *J. Inorg. Nucl. Chem.,* 35, 3587 (1973).
-
- G. Schlessinger, *Inorg. Synth.,* 6, 189 (1960). See, for example, P. Clifton and L. Pratt, *Proc. Chem.* Soc., *London,* 339 (1963).
- (23) The notation 1H indicates proton decoupled.
- In ADP and ATP, P_{α} indicates the phosphorus atom closest to adenosine. P_{β} and P_{γ} are the successively remote phosphorus atoms. See Figure
- I. K. Moedritzer, *Inorg. Chem.,* 6,936 (1967).
-
- B. S. Cooperman, *Biochemistry,* 8, 5005 (1969). K. E. Rich, R. T. Agarwal, and I. Feldman, *J. Am. Chem.* Soc., 92,6818 (1970).
- (28) Bidentate coordination of individual phosphate residues has been observed in cobalt(II1) complexes containing ethylenediamine *(see* ref **IO).** In one of the oxygen atoms attached to a given phosphorus atom is coordinated to cobalt.
- T. Glonek, A. J. R. Costello, T. C. Myers, and J. R. Van Wazer, *J. Phys.* (29) *Chem.,* 79, 1214 (1975).
- (30) T. Son, M. Roux, and M. Ellenberger, *Nucleic Acids Res.,* 79, 1214 (1975)
- (31) J. W. Palmer and F. Basolo, *J. Phys. Chem.,* 64, 778 (1960).
- E. Merritt and M. Sundaralingam, to be submitted for publication.

Contribution from the Istituto di Chimica Generale ed Inorganica, University of Modena, 41 100 Modena, Italy

Study of the Reaction of Cobalt(I1) and Nickel(I1) Benzeneseleninato Complexes with Bidentate Nitrogen Donor Ligands

CARLO PRETI* and GIUSEPPE TOSI

Received February *9, 1977* AIC701048

The pseudooctahedral **bis(benzeneseleninato-O)bis(2,2'-bipyridyl)** and **bis(benzeneseleninat0-O)bis(** 1,lO-phenanthroline) compounds of cobalt(II) and nickel(II) are obtained by reaction of the complexes $M(H_2O)_2(XPhSeO_2)_2$ (M = Co, Ni; $X = H$, p-Cl, m-Cl, p-Br, m-Br, p-CH₃, p-NO₂) with 2,2'-bipyridyl and 1,10-phenanthroline according to eq 1. All the diaquo complexes react with 2 mol of 2,2'-bipyridyl or 1,10-phenanthroline in ethanol to form seleninato- \vec{O} complexes. The newly prepared compounds are characterized on the basis of far-IR and near-IR spectroscopy and electronic spectra, as well as by magnetochemical investigations. **A** distorted octahedral geometry accounts for the room-temperature spectroscopic properties of these compounds. The nitrogen donor ligands behave always as bidentate. Our cobalt(II) and nickel(II) complexes show *Dq* values in keeping with the proposed structures and with literature data for $CoN₄O₂$ and $NiN₄O₂$ chromophores.

Introduction

Our interest in the coordination properties of the para- and meta-substituted benzeneseleninic acids as ligands was recently extended to the study of the chemical reactivity and linkage isomers of the coordination compounds of such ligands. Owing to the four possibilities for bonding the $RSeO₂$ ligand to coordination centers, the seleninato complexes are particularly suitable as model substances for the study of various isomerization phenomena.

The benzeneseleninato group can behave as a monodentate

Table I. Electronic Spectral Data and Ligand Field Parameters (cm^{-1)a}

 ${}^{\,a}$ *B* is taken to be 967 and 1041 cm⁻¹ for the Co²⁺ and Ni²⁺ free gaseous ions, respectively.

ligand in seleninato-Se or seleninato- O complexes; in the first case the metal ion is linked directly to the selenium with a strong π interaction between the metal and the selenium and in the second case by one oxygen atom. When the $RSeO₂$ group behaves as a bidentate ligand, coordination occurs through both oxygen atoms in seleninato- O,O' complexes or via oxygen and selenium in seleninato-0,Se complexes. Infrared spectroscopy provides a convenient means to distinguish between the different possibilities.

Bonding through one oxygen or two oxygen atoms, as well as via selenium or via selenium and oxygen atoms has already been reported in previous papers.¹⁻⁷ Furthermore from a detailed IR study of zinc(II), cadmium(II), and mercury(I1) complexes, we have found that the type of bonding is particularly dependent on the water content of the compounds.⁴ The water-containing complexes are always seleninato-O,O', while the anhydrous compounds are mainly seleninato- O/O' in the case of zinc, seleninato- O in the case of cadmium, and seleninato-Se in the case of mercury.⁴ In the cobalt(II) and nickel(I1) derivatives the areneseleninato group is 0,O'-bonded in both the hydrated and anhydrous complexes. $1,7$

In this paper we report the reactivity of the complexes $M(H_2O)_2(XPhSeO_2)_2$ (M = Co, Ni; X = H, p-Cl, m-Cl, p-Br, $m-P$ r, $p-CH_3$, $p-NO_2$) with 2,2'-bipyridyl and 1,10-phenanthroline (hereafter abbreviated bpy and o -phen).

Results and Discussion

The **diaquobis(seleninato)cobalt(II)** and -nickel(II) complexes react, as reported in the Experimental Section, with the nitrogen donor ligands bpy and o -phen according to the equation

$$
M(H_2O)_2(XPhSeO_2)_2 + 2L \xrightarrow{\text{BO }^{\circ}C} M(L)_2(XPhSeO_2)_2 + 2H_2O \qquad (1)
$$

$$
M = Co, Ni; L = bpy, o\text{-phen}
$$

to give microcrystalline compounds, stable in air, and slightly soluble in common organic solvents. Elemental analyses gave satisfactory results; all the complexes are paramagnetic, high spin, and nonelectrolytic in anhydrous ethyl alcohol (Λ_M) lying in the range 5.8-10.2 Ω^{-1} cm² mol⁻¹; the Λ_M values even for 1:1 electrolytes should be $35-45 \Omega^{-1}$ cm² mol⁻¹ in this solvent⁸).

Electronic Spectra and Magnetic Moments. Solid-state electronic spectra confirm an octahedral configuration of the central ion in the cobalt and nickel complexes (Table 11). The d-d spectra of the cobalt derivatives show three bands, viz., at 8695-9430,17 390-19050, and 20000-21 930 cm-', that d-d spectra of the cobalt derivatives show three bands, viz., at 8695-9430, 17 390-19 050, and 20 000-21 930 cm⁻¹, that can be assigned to the transitions ${}^4T_{1g}(F) \rightarrow {}^4T_{2g}(F)$, ${}^4T_{1g}(F)$ \rightarrow ${}^4A_{2g}(F)$, and ${}$ in the ranges 10000-11 110, 15875-18 180, and 25000-27930 cm⁻¹, assigned to the transitions ³A_{2g}(F) \rightarrow ³T_{2g}(F), ³A_{2g}(F) \rightarrow ³T_{1g}(F), and ³A_{2g}(F) \rightarrow ³T_{1g}(P), respectively.

The transition energy ratios v_2/v_1 are in the ranges 1.96-2.10 and 1.51-1.74 in accordance with the literature data for octahedral cobalt(II) and nickel(II) derivatives.^{9,10} From these data, $10Dq$, *B'*, and β values were calculated and listed in Table I.

In this treatment we have applied the available methods, 11 which differ by the bands on which the fit is based, to obtain a numerical fit to the experimental data. The experimental absorption band energies observed in the spectra of the complexes were compared to the transition energies calculated on the basis of various numerical procedures and an interesting check on the accuracy of the method has been made.

By comparison of $\delta \nu \, \% = 100(v_{\text{calcd}} - v_{\text{exptl}})/v_{\text{calcd}}$ calculated by the different methods, we can conclude that the best results are achieved fitting ν_1 and ν_3 in the case of cobalt and fitting ν_1 and the sum of ν_2 and ν_3 in the case of nickel.

The superior performance of the method which does not involve the ⁴T_{1g}(F) \rightarrow ⁴A_{2g}(F) transition in its fitting is not surprising because of the difficulty of the accurate location of v_2 in octahedral cobalt(II) complexes, owing to its low intensity.

A comparison of *Dq* and B'values for our cobalt complexes, using the values obtained from the best procedure, shows that in the spectrochemical series Dq decreases in the sequence o -phen \geq bpy with respect to the nitrogen donor ligands and in the order $PhSeO_2 > p$ -CH₃PhSeO₂ > p-ClPhSeO₂ > m -ClPhSeO₂ > p -BrPhSeO₂ > m -BrPhSeO₂ > p - $NO₂PhSeO₂$ with respect to the areneseleninato moiety. The B'values are of the order of 90% of the free-ion value (967 cm⁻¹); the nephelauxetic parameter β shows an order o-phen

Table 11. Most Important Infrared Bands (cm-I)

a **Overlapping a band of bpy.**

> bpy with respect to the nitrogen donor ligands, while the areneseleninato ions are in the order $PhSeO₂ > m$ -ClPhSeO₂⁻ $> p\text{-CH}_3\text{PhSeO}_2 > p\text{-NO}_2\text{PhSeO}_2 > p\text{-ClPhSeO}_2 \simeq m\text{-}$ $BrPhSeO₂ > p-BrPhSeO₂$.

The same comparison for the nickel derivatives shows that *Dq* decreases in the order bpy > o -phen and p -ClPhSeO₂⁻ > m -ClPhSeO₂ > m -BrPhSeO₂ > p -BrPhSeO₂ > p - $CH_3PhSeO_2^-$ > PhSeO₂⁻ for the two series of the ligands.

The B' values are of the order of 65-92% of the free-ion value (1041 cm⁻¹) suggesting a good covalency in the metal-ligand σ bond. The variation in the β_{35} parameter suggests the series bpy > o -phen and p -CH₃PhSeO₂⁻ > p -BrPhSeO₂⁻ $> m$ -ClPhSeO₂⁻ $>$ PhSeO₂⁻ $> p$ -ClPhSeO₂⁻ $> m$ -BrPhSeO₂⁻. *As* regards the metals, they can be placed in the nephelauxetic series $Co(II) > Ni(II)$.

Decreasing values of β are associated with a reduction in the effective positive charge of the cation and with an increasing tendency to be reduced to a lower oxidation state. For **3d** metals the variation of Racah interelectronic repulsion parameter with the effective cationic charge *Z** and the number *q* of electrons in the partly filled d shell is expressed by the relation¹²

$$
B' = 384 + 58q + 124(Z^* + 1) - 540/(Z^* + 1)
$$

where B' is cm⁻¹.

The effective ionic charges for the cobalt(II) and nickel(II) complexes are in the ranges **1.77-1.20** and **1.60-0.52,** respectively, below the formal **+2** oxidation state of these metals.

Analysis of the electronic spectra of octahedral cobalt(I1) and nickel(I1) complexes allows us to determine the mode of bonding of the ligands. By comparison of the **Dq** values, reported in the literature, for CoL₆ and NiL₆ groups¹³ using the rule of average environment¹⁴ to obtain an estimate of the octahedral ligand field splitting parameter, we can distinguish between MN_2O_4 and MN_4O_2 chromophores. The *Dq* values

for $CoO₆$ chromophores are in the range $920-980$ cm⁻¹ while the values corresponding to $CoN₆$ chromophores are higher than 1000 cm^{-1} , $13-15$ As for the octahedral complexes of nickel(II), the Dq values for NiO_6 and NiN_6 chromophores are in the ranges **850-930** and **1006-1 150** cm-I, respective- $\rm 1y.$ ¹³⁻¹⁶

Although our complexes show Dq values typical of MN_4O_2 chromophores, results of infrared and far-infrared spectral studies are needed before any conclusions can be drawn.

Using the empirical relation $10Dq = [f(\text{ligand})][g(\text{central})]$ ion)] due to Jorgensen¹⁴ with $g(Ni^{2+}) = 8.9$, we obtain f values in the range **1.12-1.24.** These values seem to be reasonable and in accord with the above conclusions from **Dq** values, although it is difficult to estimate the inaccuracy introduced by application of the above equation.

The *per* values of the cobalt derivatives, in the range **4.7-5.3,** are indicative of six-coordinated high-spin cobalt(II), showing very high orbital contributions characteristic of octahedral geometry around cobalt(I1). The magnetic moments of the nickel complexes $(2.9-3.4 \mu_B)$ are within the range commonly accepted for six-covalent octahedral nickel(I1).

Infrared Spectra. Let us first note that the bands due to the substituent and the out-of-plane ring bending appear in the spectra of the complexes at the same wavenumbers as in the spectra of the free ligands.

These derivatives have selenium-oxygen stretching frequencies clearly indicative of a seleninato-0 coordination, $v(SeO)$ is shifted toward higher wavenumbers, and v_{asym} -**(SeOM)** is shifted to lower frequencies as coordination removes the equivalence of the selenium-oxygen bonds; the frequency difference is ca. **100** cm-I, Table 11. The spectral patterns of these complexes are similar to those of anhydrous cadmium derivatives already reported to have seleninato- O bonding.⁴

The medium-strong absorption bands present in the ranges **3480-3460** cm-', v(OH), and **1645-1620** cm-I, 6(HOH), in all the water-containing complexes, clearly confirm the presence of water of crystallization. Since vibrational modes such as wagging, twisting, and rocking activated by coordination to the metal have not been found in the expected ranges,⁴ it appears that coordinated water is not present.

The infrared spectra of the complexes show, in the ranges 1600-1400, 900-700, and 650-400 cm⁻¹, peaks giving evidence that the ligands bpy and o-phen are bound to the metal through the nitrogen. Qualitative interpretation of the spectra shows that the ligands are chelated to the metals.

New bands are observed at about 1600, 1490, and 1470 cm⁻¹ in the bpy derivatives, clearly indicative of a chelating behavior of this ligand. These absorptions, involving the ring C-C and C-N vibrations of the 2,2/-bipyridyl, are observed at lower energies in the uncomplexed ligand.¹⁷ Additional bands are observed in the complexes between 1310-1330 cm⁻¹, at 1160 cm^{-1} , and in the 1010-1030 cm^{-1} region. The absorption in the region near 1000 cm^{-1} is due to the pyridine breathing mode in the uncomplexed bpy; upon chelation this band undergoes a blue shift and intensifies. Sinha has made similar observations on related complexes.'* Upon chelation splitting of the out-of-plane CH bending vibration at 751 cm⁻¹ occurs in all the studied complexes. $18-20$

Slight blue shifts are noted for the vibrational modes at 657 and 622 cm^{-1} ; in addition the 404 cm^{-1} band shifts to higher frequency. These shifts accompanied by the above reported behavior of bpy are typical of chelation of the ligand. 2,2/- Bipyridyl is free of absorptions in the region from 300 to 200 cm^{-1} .

As for the o -phen derivatives, the 1499-cm⁻¹ band appears to shift to higher wavenumbers, at about 1520 cm^{-1} ; the same behavior is observed for the strong band at 1415 cm-]. **A** new absorption also occurs on chelation at about 1150 cm^{-1} in all the complexes. The weak absorption band at 1131 cm^{-1} is reinforced and shifted toward lower energies; in addition a medium or medium-strong band appears at some 876 cm⁻¹ in the complexes, whereas only a shoulder is present in the ligand itself. This behavior is typical of complexes containing the ligand o -phen acting as a chelating group.²¹

The weak band at 620 cm^{-1} appears to be shifted toward higher frequency and intensifies upon chelation; it appears, in fact, as a medium-strong band in the $635-651\text{ cm}^{-1}$ region. The 404-cm⁻¹ band in the uncomplexed ligand also appears to shift to higher frequency and intensifies upon chelation. Some weak bands are found in the region $500-590$ cm⁻¹,²²

In the far-infrared region many bands are present; we can assign the deforming symmetric and antisymmetric δ (OSeC) in the range $410-338$ cm⁻¹, in good accord with the previously reported studies. In all the complexes a medium-strong or strong band is present in the range $470-432$ cm⁻¹ and can be assigned to the ν (Co-O) and ν (Ni-O) stretching mode, Table **11;** this assignment is in keeping with the observations on the previously reported complexes $M(H_2O)$ ₂(XPhSeO₂)₂ (M = Co, Ni).

New bands are present in the 345-293-cm⁻¹ region and in the range $350-294$ cm⁻¹ in the cobalt and nickel derivatives, respectively, absent in the spectra of starting materials used in this study, and they can be assigned to metal-ligand vibrations involving the nitrogen atoms of the ligands, 23 Table **11.**

The cobalt(I1) and nickel(I1) complexes of the type M- $(H_2O)₂(XPhSeO₂)₂$ react with bpy and o-phen giving products in which the coordinated water is substituted by the nitrogen donor ligands. These ligands are always bidentate chelating agents in all the complexes. During the substitution reaction in which the water is replaced by the nitrogen donor ligands, the $RSeO₂$ group undergoes a reorientation passing from bidentate seleninato-0,O' to monodentate seleninato-0.

The infrared results as regards the metal-ligand assignments, the chelating behavior of bpy and o -phen, and the fact that the benzeneseleninato ion resulted monodentate are confirmed by the results of the electronic spectra.

Our cobalt and nickel complexes show *Dq* values that are, using the rule of average environment, typical of MN_4O_2 chromophores. The spectroscopic splitting parameter Δ , for a tetrahedral chromophore is equal to four-ninths of the corresponding parameter Δ_0 for the octahedral chromophore.

If we compare the spectroscopic splitting parameter Δ_t for the tetrahedral anhydrous derivatives' of the type *Co-* $(XPhSeO₂)₂$ with the Δ_0 for the present complexes, the ratio Δ_t/Δ_0 is in the ranges 0.47–0.53 and 0.46–0.52 for the cobalt bpy and o-phen derivatives, respectively. This behavior agrees with the fact that the above quoted factor of $\frac{4}{9}$ is valid only if the metal-ligand distance R_t in tetrahedral complexes is the same as the corresponding distance R_0 in octahedral derivatives; we can conclude that R_i in the anhydrous complexes is less than R_0 in the reported ones.

Available structural data suggest that the ratio R_0/R_1 lies usually in the range 1.08-1.10; using the crystal field theory and accepting the validity of the crystal field R^{-5} law (bearing in mind that it is followed only by a limited number of systems over a limited range of internuclear distances), the relation between Δ_t and Δ_o can be expressed by²⁴⁻²⁷

$\Delta_t/\Delta_o = \frac{4}{9} (R_o/R_t)^5$

Using the above reported ratios Δ_t/Δ_o calculated for our complexes, we have obtained values for R_0/R_t in the ranges $1.01-1.04$ and $1.00-1.03$ for the Co-bpy and $-o$ -phen complexes, respectively.

A comparison of the effective positive charges *Z** for bpy and o-phen derivatives for octahedral diaquo and tetrahedral areneseleninato derivatives' shows for the cobalt complexes an increase of the Z^* values on passing from the diaquo derivatives to the bpy and o-phen complexes, with the exception of the p -CH₃ and p -NO₂ derivatives. The values of the tetrahedral complexes are always consistently lower than those of the other complexes.

Experimental Section

Preparation of the Ligands. Benzeneseleninic acid, its meta- and para-substituted derivatives, and the corresponding sodium salts were prepared and purified according to previously reported methods.¹

Preparation of the Complexes. The diaquobis(seleninato)metal(II) derivatives were obtained by reaction of metal halide with sodium arylseleninate in water or ethanol at temperatures between 25 and 60 "C in the stoichiometric ratio 1:2 meta1:ligand. The compounds which precipitated immediately or after rotary evaporation were filtered, washed with water, ethanol, and diethyl ether, and dried over P_4O_{10} . The complexes of bpy and *o*-phen were obtained by adding an ethanolic solution of the ligand to a suspension of cobalt or nickel diaquo(aryl)seleninate with a metal:ligand molar ratio 1:2. The solution was refluxed and vigorously stirred for about 15 min. Upon addition of the nitrogen donor ligand the solution becomes clear and the color changes to orange-yellow in the case of cobalt and to pale green in the case of nickel derivatives. The solution at the end of the reaction was filtered in order to remove the unreacted starting complexes and reduced to small volume under vacuum. After addition of diethyl ether the compounds were obtained in good yield as crystalline products which were filtered, washed with diethyl ether, and dried over P_4O_{10} .

Physical Measurements. The electronic spectra of the solid compounds were recorded with a Shimadzu MPS-SOL spectrophotometer. Samples were prepared by grinding the complexes on a filter paper as support. The infrared spectra of KBr pellets were recorded with a Perkin-Elmer 457 (4000-400 cm⁻¹) and far-infrared spectra of Nujol mulls with a Perkin-Elmer 225 (450-200 cm-I) spectrophotometer, Atmospheric water was removed from the spectrophotometer housing with a stream of dry nitrogen. The roomtemperature magnetic moments were measured with the Gouy method using HgCo(NCS)₄ or Ni(en)₃S₂O₃ as calibrants and correcting for diamagnetism with the appropriate Pascal's constants. The conductivities of the complexes in **10-3M** solution in anhydrous ethyl alcohol were measured with a WTW (Wissenschaftlich Technische Werkstatten) LBR conductivity bridge at 25 °C. Carbon, nitrogen, and hydrogen were determined using a Perkin-Elmer **240** elemental analyzer.

Acknowledgment. We thank Dr. P. Zannini for his experimental work, Mr. G. Pistoni for elemental analyses, and the National Research Council (CNR) of Italy for financial support.

Registry No. $Co(bpy)_{2}(PhSeO_{2})_{2}$, 63714-24-9; $Co(bpy)_{2}(p CIPh\overline{SeO_2}$ ₂, **63714-25-0**; $\overline{Co(bpy)}_2(m\text{-}CIPhSeO_2)_{2}$, **63714-26-1**; $Co(bpy)_{2}(p-BrPhSeO_{2})_{2}$, 63714-27-2; $Co(bpy)_{2}(m-BrPhSeO_{2})_{2}$, **63714-28-3;** $Co(bpy)_{2}(p-CH_{3}PhSeO_{2})_{2}$, 63743-87-3; $Co(bpy)_{2}(p-CH_{3}PhSeO_{2})_{2}$ NO₂PhSeO₂)₂, **63743-88-4;** Co(o -phen)₂(PhSeO₂)₂, **63714-29-4**; $Co(\sigma\text{-phen})_2(p\text{-}CIPhSeO_2)_2$, 63714-30-7; $Co(\sigma\text{-phen})_2(m\text{-}CIPhSeO_2)_2$, **63714-31-8; C~(o-phen)~(p-BrPhSeO~)~, 63714-32-9;** Co(o $phen)_{2}(m-BrPhSeO_{2})_{2}$, $63714-33-0$; $Co(\sigma-phen)_{2}(p-CH_{3}PhSeO_{2})_{2}$, **63714-34-1; C0(o-phen)~(q-N02PhSeO~)~, 63714-35-2;** Ni(bpy),- (PhSeO₂)₂, 63743-89-5; Ni(bpy)₂(p-ClPhSeO₂)₂, 63714-13-6; Ni-(bpy)₂(m-ClPhSeO₂)₂, 63714-14-7; Ni(bpy)₂(p-BrPhSeO₂)₂, **63714-15-8; Ni(bpy)₂(m-BrPhSeO₂)₂, 63714-16-9; Ni(bpy)₂(p-** CH_3PhSeO_2 ₂, 63714-17-0; $Ni(\text{o-phen})_2(PhSeO_2)_2$, 63714-18-1; $Ni(\sigma\text{-phen})_2(p\text{-}ClPhSeO_2)_2,63714-19-2; Ni(\sigma\text{-phen})_2(m\text{-}ClPhSeO_2)_2,$ 63714-20-5; Ni(*o*-phen)₂(p-BrPhSeO₂)₂, 63714-21-6; Ni(*o*-phen)₂- $(m-\text{BrPhSeO}_2)_2$, 63714-22-7; $\text{Ni}(o\text{-phen})_2(p-\text{CH}_3\text{PhSeO}_2)_2$, **63714-23-8;** $Co(H_2O)_2(PhSeO_2)_2$, 55060-50-9; $Co(H_2O)_2(p CIPhSeO₂$ ₂, 55060-51-0; $Co(H₂O)₂(m-ClPhSeO₂)₂$, 55060-52-1; $Co(H₂O)₂(p-BrPhSeO₂)₂$, 55060-53-2; $Co(H₂O)₂(m-BrPhSeO₂)₂$, 55060-54-3; $Co(H_2O)_2(p-CH_3PhSeO_2)_2$, 55060-55-4; $Co(H_2O)_2$ - $(p\text{-}NO_2PhSeO_2)_2$, 55060-56-5; $Co(PhSeO_2)_2$, 63743-85-1; $Co(p-$ C1PhSeO₂)₂, 63714-01-2; Co(m-C1PhSeO₂)₂, 63714-02-3; Co(p-BrPhSeO₂)₂, 63714-03-4; Co(m-BrPhSeO₂)₂, 63714-04-5; Co(p-CH₃PhSeO₂)₂, 63714-05-6; Co(p-NO₂PhSeO₂)₂, 63714-06-7; Ni-(H20)2(PhSe02)2, **55060-72-5;** Ni(H20)2(p-C1PhSe02)2, **55060-73-6;** $Ni(H₂O)₂(m-ClPhSeO₂)₂$, 55060-74-7; $Ni(H₂O)₂(p-BrPhSeO₂)₂$, 55060-75-8; Ni(H₂O)₂(m-BrPhSeO₂)₂, 55060-76-9; Ni(PhSeO₂)₂,

63714-07-8; Ni(p-ClPhSeO₂)₂, 63714-08-9; Ni(m-ClPhSeO₂)₂, **63714-09-0;** Ni(p-BrPhSe02)2, **63714-10-3.**

Supplementary Material Available: Tables containing analytical data and other physical properties, substituent absorption and outof-plane ring bending frequencies of the benzeneseleninato ligands, most important infrared bands of 2,2'-bipyridyl and **1** ,IO-phenanthroline derivatives **(1700-200** cm-I), and a comparison of the effective positive charges *Z** **(5** pages). Ordering information is given on any current masthead page.

References and Notes

- (1) C. Preti, G. Tosi, D. De Filippo, and G. Verani, *J. Inorg. Nucl. Chem.*, **36**, 2203 (1974).
- **(2)** C. Preti, G. Tosi, D. De Filippo, and G. Verani, *Znorg. Nucl. Chem. Lett.,* **10, 541 (1974).**
- (3) E. Bertelli, C. Preti, and G. Tosi, *J. Inorg. Nucl. Chem.*, 37, 1421 (1975).
-
-
-
- (4) C. Preti and G. Tosi, *Spectrochim. Acta*, *Part A*, 31, 1139 (1975).
(5) C. Preti and G. Tosi, *Z. Anorg. Allg. Chem.*, 432, 259 (1977).
(6) C. Preti and G. Tosi, *Transition Met. Chem.*, 2, 1 (1977).
(7) C. Preti, G
-
- **(9) A.** B. P. Lever and D. Ogden, *J. Chem. SOC. A,* **2041 (1967). (10)** L. Sacconi, *Trans. Met. Chem.,* **4, 199 (1968).**
- **(11)** E. Konig, *Struct. Bonding (Berlin),* **9, 175 (1971).**
- **(12)** C. **K.** Jorgensen, *Prog. Znorg. Chem.,* **4,73 (1962).**
- **(1 3) A.** B. P. Lever, "Inorganic Electronic Spectroscopy", Elsevier, Amsterdam, **1968.**
- **(14) C. K. Jorgensen, "Absorption Spectra and Chemical Bonding in (15) C. P. Preti and G. Tosi,** *Can. J. Chem.***, 53**, 177 (1975).
 (15) C. Preti and G. Tosi, *Can. J. Chem.***, 53**, 177 (1975).
-
- **(16)** R. **C.** Rosenberg, C. **A.** Root, and H. B. Gray, *J. Am. Chem.* Soc., **97,**
- **21 (1975). (17) A.** R. Katritzky, Q. *Reu., Chem.* **SOC., 13, 353 (1959).** (18) **S.** P. Sinha, *Spectrochim. Acta,* **20, 879 (1964).**
-
- (19) A. A. Schilt and R. C. Taylor, *J. Inorg. Nucl. Chem.*, 9, 211 (1959).
(20) A. A. Schilt, *J. Am. Chem. Soc.*, 81, 2966 (1959).
(21) J. R. Ferraro and W. R. Walker, *Inorg. Chem.*, 4, 1382 (1965).
(22) J. R. Ferraro,
-
-
-
-
-
-
-
- **(27)** H. **G.** Drickamer, *J. Chem. Phys.,* **47, 1880 (1967).**

Contribution from the Hahn-Meitner-Institut fur Kernforschung Berlin GmbH, Bereich Strahlenchemie, D 1000 Berlin **39,** Germany

Kinetics and Mechanism of Ligand Dissociation of Cobalt(I1)-Polyamine Complexes in Aqueous Solution

N. SHINOHARA, J. LILIE,* and **M.** G. SIMIC

Received April **6,** *1977* **AIC70240C**

The kinetics of dissociation of Co(I1)-polyamine (en, ethylenediamine; dien, diethylenetriamine; trien, triethylenetetramine), which were formed by the reaction of hydrated electrons e_{aq} with the corresponding Co(III) complexes, have been investigated by conductometric pulse radiolysis in weakly acid aqueous solutions. The dissociation (detachment) rate constants for all ligands examined increase with increasing hydrogen ion concentration and attain a limiting value: $[Co(en)_3]^{2+}$, 1.5×10^4 s⁻¹; [Co(en)₂(OH₂)₂]²⁺, 1.4 × 10³ s⁻¹; [Co(en)(OH₂)₄]²⁺, 1.7 × 10² s⁻¹; [Co(dien)₂]²⁺, 1.8 × 10⁴ s⁻¹; [Co(dien)(OH₂)₃]²⁺,
8.7 × 10² s⁻¹; [Co(trien)(OH₂)₂]²⁺, 2.1 × 10³ s⁻ mechanism in which the first N-Co(I1) bond rupture is the rate-determining step. **A** proton adds to this released amino group and accelerates further dissociation of the rest of the donor groups. The enhancement ratios of rate constants with increasing number of N donors in Co(II)-ammine complexes are larger for dissociation $(\sim 7$ for the first two NH₃) than for formation (~ 2) .

I. Introduction

The kinetics of the stepwise "unwrapping" (peeling off) of multidentate amino ligands from nickel $(II)^{1-5}$ and chromi $um(III)^{6-9}$ have been well investigated in aqueous solution. However, few kinetic data exist on the dissociation of labile chelate complexes containing cobalt(I1) as the central atom.

In our preceding paper¹⁰ the dissociation rate constants of some ammine- and polyaminecobalt(I1) complexes formed by the reduction with hydrated electrons, e_{aq} , were determined. In the case of $Co(II)$ -ammine complexes such as $[Co (NH_3)_6]^2$ ⁺, [Co(NH₃)₅Cl]⁺, etc., the first three ligands are detached very rapidly $(k > 7 \times 10^5 \text{ s}^{-1})$ whereas the last three

ligands $[Co(NH_3)_3(OH_2)_3]^{2+}$ are detached successively with rate constants of 6.4×10^4 , 8.6×10^3 , and 1.1×10^3 s⁻¹. The rate constants are independent of pH in the pH range **3-4.5.** On the other hand, Co(I1)-polyamine complexes such as ethylenediamine and triethylenetetramine dissociate more slowly and the dissociation rates depend on pH. Further we present the data for the dissociation of $Co(dien)_2^{2+}$ (dien = diethylenetriamine) and discuss the dissociation kinetics and mechanisms in more detail.

11. Experimental Section

 $[Co(en)_3]Br_3$,¹¹ $[Co(dien)_2] (ClO_4)_3$,¹² and *cis*- $[Co(trien)Cl_2]Cl¹³$ were prepared according to the literature and $[Co(en)_3]Br_3$ was